Search results

Search for "calcium phosphate" in Full Text gives 24 result(s) in Beilstein Journal of Nanotechnology.

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • high glass solubility will provide an enhanced delivery of these elements, which are important for bone formation [24][27][28][29]. Boron was shown to promote the formation of amorphous calcium phosphate, which is beneficial for normal metabolism and bone tissue repair; besides, the addition of B2O3 to
  • the incipient stage of calcium phosphate precipitation after 3 days of soaking (Figure 7a). In contrast, HAP-based composites did not exhibit any precipitate at the surface after 3 days of soaking (Figure 7b). This can be the result of the more porous structure of HAG-based composites (Figure 4a) and
  • composites. We did not observe any influence of the glass content (5% or 10%) or sintering temperature (1200 or 1250 °C) on the mineralization capability of the composites. At higher magnification, the evolution of the fine microstructure of the calcium phosphate precipitates with soaking time can be traced
PDF
Full Research Paper
Published 12 Dec 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • materials should be in the form of inorganic and organic composites. To mimic the inorganic portion, researchers have tried to utilize calcium phosphate materials due to their similarity to the native tissue. To mimic the organic portion of the bone, several materials including polymers, proteins, and
  • nanosilicate composites show similar extracellular growth [126]. Shafiei et al. (2019) developed egg-shell-based 3D-printed multiphasic calcium phosphate scaffolds to induce an osteoinductive character for bone tissue repair. The 3D-printed scaffolds achieved an interconnected porosity of ≈60.7% which promoted
PDF
Review
Published 29 Sep 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • of a protective oxide film. These properties makes it a material of choice for implants. Additionally, a thin calcium phosphate coating has been shown to improve the biocompatibility and osteoconductivity of implants [56]. To augment osseointegration and tissue generation, as well as to reduce
  • surface chemistry play a significant role in the interaction between proteins and cells and the material surface. It has also been shown that hydroxyapatite and calcium phosphate mimics the chemical composition of natural bone. Thus, with the use of these components in the coating, TiO2 implants have
PDF
Album
Review
Published 14 Feb 2022

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • amorphous calcium phosphate particles for enhanced adhesive applications [124]. The spray pyrolysis process requires using an atomizer, a tube furnace, a reaction tube, a collection filter, and a vacuum pump [124]. This method is also often used for production of metal powders and demonstrates less
PDF
Album
Review
Published 25 Jan 2021

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • regarding safety has attracted significant attention [4][5]. The calcium phosphate (CaP) co-precipitation method has been extensively used for gene delivery due to its excellent biocompatibility and simple preparation [6]. CaP is commonly considered as one of the most important inorganic materials for
  • , this method may provide a solution to the current problem of using calcium phosphate. The cellular uptake performance is important for a successful vector-mediated gene transfection. In the cellular uptake process, the internalization pathway is an essential factor to prevent the fate of lysosomal
PDF
Album
Full Research Paper
Published 05 Nov 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • ; cuttlefish bone; hard tissue treatment; hydroxyapatite; nanorods; Introduction Generally, the hard tissue of humans and animals, such as bone and teeth, are composed of natural hydroxyapatite (Hap), which is a bioactive ceramic material with high calcium phosphate concentration whereby the material can
  • the bone and dental implant field. However, the development of a novel biomaterial for hard tissue treatments is still a major challenge due to the high material cost and lack of biocompatibility. Moreover, a highly biocompatible material, such as calcium phosphate, is required to overcome the
  • increasing demand of biomaterials for hard tissue repair [6][7]. It is noteworthy that marine species, including corals, crabs, and fish bones, possess natural calcium phosphate and are currently being extracted and utilized as drug delivery carriers, tissue engineering scaffolds and dental cements in the
PDF
Album
Full Research Paper
Published 04 Feb 2020

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • different solution and interfacial behavior compared to corresponding conventional monomeric surfactants [32][33][34]. The interaction of gemini surfactants with solid (nano)surfaces such as clay [35], calcium phosphate [36], silica [37][38][39][40], TiO2 [41], ZnO [42] and carbon NTs [43] have been
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • (OH)2) is a calcium phosphate, structurally and chemically similar to the mineral phase of human bone and teeth. Due to its high biocompatibility and bioactivity, it has been successfully applied in the manufacturing of cosmetics and hygiene products, as well as in bone-tissue engineering and
  • in the 2θ range of 10–60° and with a step size of 0.02° at room temperature. Obtained spectra were imported into „Match!” software and compared to the reference spectra from the ICDD PDF-2 database (The International Center for Diffraction Data, 2015) for calcium phosphate hydroxide (hydroxyapatite
  • of other tested cell lines. This is important for the assessment of inhalation exposure connected to the processing of nanostructured calcium phosphate powders similar to the studied samples. The next stage of inhalation-safety research should be long-term tests and dustiness tests with nanoscale HAp
PDF
Album
Full Research Paper
Published 27 Dec 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • , retention, and low toxicity, as well as surface engineering with targeting moieties, can be used as a tool in enhancing the therapeutic efficacy of current approaches. Inorganic calcium phosphate nanoparticles have the potential to increase the therapeutic potential of antiproliferative drugs due to their
  • excellent loading efficiency, biodegradable nature and controlled-release behaviour. Herein, we report a novel system of 5-fluorouracil (5-FU)-loaded calcium phosphate nanoparticles (CaP@5-FU NPs) synthesized via a reverse micelle method. The formation of monodispersed, spherical, crystalline nanoparticles
  • upon CaP@5-FU NP treatment. Likewise, the cell cycle analysis was performed to confirm the enhanced apoptotic induction. Our study concludes that the calcium phosphate nanocarriers system, i.e. CaP@5-FU NPs, has higher antineoplastic potential as compared to 5-FU alone and can be used as an improved
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • with genipin [39]. Nadeem et al. have also reported that three-dimensional calcium phosphate/gelatin composite scaffolds, with an integrated surface pattern, could be fabricated by crosslinking with genipin [38]. These calcium phosphate/gelatin composite scaffolds could be fabricated with 40 µm pits
PDF
Album
Full Research Paper
Published 11 Jun 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
PDF
Album
Review
Published 03 Apr 2018

Calcium fluoride based multifunctional nanoparticles for multimodal imaging

  • Marion Straßer,
  • Joachim H. X. Schrauth,
  • Sofia Dembski,
  • Daniel Haddad,
  • Bernd Ahrens,
  • Stefan Schweizer,
  • Bastian Christ,
  • Alevtina Cubukova,
  • Marco Metzger,
  • Heike Walles,
  • Peter M. Jakob and
  • Gerhard Sextl

Beilstein J. Nanotechnol. 2017, 8, 1484–1493, doi:10.3762/bjnano.8.148

Graphical Abstract
  • is to create multifunctional NPs by precipitation and simultaneous doping of the NP matrix with various ions [8][9]. Due to their co-doping with lanthanide ions, NPs on the basis of calcium phosphate or gadolinium oxide are also detectable by MRI and PL [10][11][12][13]. In recent years, fluorides
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • , D-14476 Potsdam, Germany Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany 10.3762/bjnano.8.80 Abstract Understanding the mechanisms responsible for generating different phases and morphologies of calcium phosphate by elastin-like recombinamers is supreme for bioengineering of
  • bind to and nucleate calcium phosphate. The benefit of using click chemistry is that the hybrid elastin-like-statherin recombinamers cross-link without losing their fibrillar structure. Mineralization of the resulting hybrid elastin-like-statherin recombinamer hydrogels with calcium phosphate is
  • described. Thus, two different hydroxyapatite morphologies (cauliflower- and plate-like) have been formed. Overall, this study shows that crosslinking elastin-like recombinamers leads to interesting matrix materials for the generation of calcium phosphate composites with potential applications as
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • articles of this Thematic Series, Egorov et al. proposed a relatively simple protocol for 3D printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate for bone tissue engineering [24]. The analysis of 3D printed structures shows that they possess large
PDF
Editorial
Published 08 Feb 2017

Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles

  • Olga Rotan,
  • Katharina N. Severin,
  • Simon Pöpsel,
  • Alexander Peetsch,
  • Melisa Merdanovic,
  • Michael Ehrmann and
  • Matthias Epple

Beilstein J. Nanotechnol. 2017, 8, 381–393, doi:10.3762/bjnano.8.40

Graphical Abstract
  • membrane, which is a problem if an intracellular mode of action is desired, for example, with a nuclear receptor. Calcium phosphate nanoparticles can serve as carriers for small and large biomolecules as well as for synthetic compounds. The nanoparticles were prepared and colloidally stabilized with either
  • flow cytometry. All proteins were readily transported into the cells by cationic calcium phosphate nanoparticles. Notably, only HTRA1 was able to penetrate the cell membrane of MG-63 cells in dissolved form. However, the application of endocytosis inhibitors revealed that the uptake pathway was
  • different for dissolved HTRA1 and HTRA1-loaded nanoparticles. Keywords: calcium phosphate; endocytosis; nanoparticles; proteins; Introduction Many receptors for drugs or proteins are located inside cells [1][2]. However, because many biomolecules are not able to penetrate the cell membrane on their own, a
PDF
Album
Full Research Paper
Published 07 Feb 2017

3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

  • Aleksey A. Egorov,
  • Alexander Yu. Fedotov,
  • Anton V. Mironov,
  • Vladimir S. Komlev,
  • Vladimir K. Popov and
  • Yury V. Zobkov

Beilstein J. Nanotechnol. 2016, 7, 1794–1799, doi:10.3762/bjnano.7.172

Graphical Abstract
  • calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier
  • diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions. Keywords: 3D printing; bone graft; calcium phosphate; composite materials; sodium
  • by an increase in concentration of heterogeneous nucleation centers of a calcium phosphate phase on the carboxyl groups of the amino acids. X-ray diffraction data lend support to this tendency: the height of the strongest peak (020) of DCPD decreases by a factor of 7 as the alginate and
PDF
Album
Letter
Published 21 Nov 2016

Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles

  • Sylwia Kuśnieruk,
  • Jacek Wojnarowicz,
  • Agnieszka Chodara,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 1586–1601, doi:10.3762/bjnano.7.153

Graphical Abstract
  • ; Introduction Hydroxyapatite (HAp) is a naturally occurring mineral (a form of calcium apatite), which is also an inorganic component of bones, with approximately 8 wt % water, 22 wt % protein and 70 wt % mineral. HAp is a form of calcium phosphate with the chemical formula Ca10(PO4)6(OH)2 and a hexagonal
  • (DCPD) and amorphous calcium phosphate (ACP) [55]. HAp crystallization during the synthesis ensues in accordance with the mechanism of crystallization from a solution. During the growth process, particles may grow on the surface of sediment or precipitate in all directions. Their growth may be expected
PDF
Album
Full Research Paper
Published 04 Nov 2016

Towards multifunctional inorganic materials: biopolymeric templates

  • Claudia Steinem and
  • Joachim Bill

Beilstein J. Nanotechnol. 2015, 6, 1698–1699, doi:10.3762/bjnano.6.172

Graphical Abstract
  • structure formation of inorganic components in an aqueous environment. Accordingly, composites made of inorganic solids (i.e., calcium phosphate or carbonate) and biopolymers are formed. Furthermore, the resulting combination of inorganic and bioorganic components yields biominerals with unique
PDF
Editorial
Published 05 Aug 2015

In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water

  • Giulia Serrano,
  • Beatrice Bonanni,
  • Tomasz Kosmala,
  • Marco Di Giovannantonio,
  • Ulrike Diebold,
  • Klaus Wandelt and
  • Claudio Goletti

Beilstein J. Nanotechnol. 2015, 6, 438–443, doi:10.3762/bjnano.6.44

Graphical Abstract
  • applications ranging from nanotechnology [7] to gas sensing [8], as well as catalysis [9] and biomedicine [10][11]. In particular, the high corrosion resistance of titanium to biological environments has stimulated the study of this metal and its oxide for in vivo or in vitro calcium phosphate ceramic growth
PDF
Album
Full Research Paper
Published 12 Feb 2015

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • phosphate/chitosan composite films were shown to influence the behavior of human mesenchymal stem cells. Lee et al. [79] studied the scaffold–cell interaction by changing the crystallinity and ratio of the calcium phosphate. Alginate is another of the gelling biopolymers used as a scaffold. An alginate
  • higher catalytic activity than bulk tungsten trioxide. Other materials, such as cobalt-Prussian blue nanoparticles [75], Zn–Al layered double hydroxide [76], hydroxyapatite [77], and calcium carbonate [78], were also prepared within, or in the presence of, chitosan gels. In a biological approach, calcium
PDF
Album
Review
Published 17 Nov 2014

Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

  • Ahmed Salama,
  • Mike Neumann,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2014, 5, 1553–1568, doi:10.3762/bjnano.5.167

Graphical Abstract
  • -14476 Potsdam, Germany 10.3762/bjnano.5.167 Abstract Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and
  • the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies. Keywords: biomineralization; calcium phosphate; carbohydrates; cellulose; hybrid materials; ionic liquid; Introduction One of the key advantages of carbohydrates, especially cellulose
  • and chitin, is their abundance and favorable properties such as mechanical robustness and biocompatibility [1][2][3][4]. Moreover, the growth (mineralization) of calcium phosphate on polysaccharides may lead to composites with properties that are useful for the regeneration of hard tissue even though
PDF
Album
Full Research Paper
Published 16 Sep 2014

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

  • Xiaohong Wang,
  • Heinz C. Schröder and
  • Werner E. G. Müller

Beilstein J. Nanotechnol. 2014, 5, 610–621, doi:10.3762/bjnano.5.72

Graphical Abstract
  • for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of
  • crown mammals, the calcium phosphate/hydroxyapatite (HA)-based skeletal systems. The understanding of the genetic blueprint of any morphogenetic event must begin with the identification and functional characterization of the individual expressed genes (proteins), followed by the elucidation of the
  • spectroscopic studies suggested that Ca-deposition in osteoblasts starts intracellularly in calcium-rich vesicles that substantially contribute to the formation of bone apatite [27]. Both calcium phosphate formation [28] and calcium carbonate deposition [29] are exergonic processes that, in turn, are
PDF
Album
Review
Published 12 May 2014

Nano-FTIR chemical mapping of minerals in biological materials

  • Sergiu Amarie,
  • Paul Zaslansky,
  • Yusuke Kajihara,
  • Erika Griesshaber,
  • Wolfgang W. Schmahl and
  • Fritz Keilmann

Beilstein J. Nanotechnol. 2012, 3, 312–323, doi:10.3762/bjnano.3.35

Graphical Abstract
  • crystals in an organic matrix [18][19][20], and laminates of calcium phosphate nanoparticle reinforced chitin fibers [21][22]. FTIR spectroscopic microscopy is a well-established method and has been extensively used to study bone biominerals at several micrometers spatial resolution [23][24][25][26][27][28
  • phase effect is on the order of 30° for strong polymer vibrations [8][9] but on the order of 400° for strong crystal phonons [3][6]. For molluscs the employment of phosphate in shell architecture has not been reported, but the radula (tooth structure) of the chitons is known to contain calcium phosphate
PDF
Album
Full Research Paper
Published 05 Apr 2012
Other Beilstein-Institut Open Science Activities